- 3
- Computer modelling of cotton fibre length distribution for simulated HVI testing
- Pashin E. L., Orlov A. V. Computer modelling of cotton fibre length distribution for simulated HVI testing. Technologies & Quality. 2025. No 4(70). P. 16–22. (In Russ.) https://doi.org/10.34216/2587-6147-2025-4-70-16-22.
- DOI: https://doi.org/10.34216/2587-6147-2025-4-70-16-22
- УДК: 677.017.222
- EDN: UMTQQJ
- Publish date: 2025-11-17
- Annotation: For simulation-based analysis of cotton fibre length measurement using a fibrograph under the HVI method, an efficient algorithm for generating realistic fibre length distributions is required. It has been established that a right-skewed normal distribution law provides an adequate basis for such modelling. The necessity of improving the known algorithm, which relies on difficult-to-interpret distribution parameters (location ξ, scale ω, and shape α), is emphasised. The proposed refinement consists in replacing these parameters with widely accepted statistical characteristics of fibre assemblies – the mathematical expectation M, the mode Mo, and the standard deviation σ of fibre length. An algorithm for computing the mode Mo is developed, implemented through a dichotomy method. A comparative analysis was performed between empirical distributions reported in published sources and synthetic distributions obtained via the newly proposed approach. A high degree of similarity was observed, confirming the effectiveness of the developed simulation method based on conventional statistical descriptors (M, Mo, σ).
- Keywords: fibre length characteristics, cotton, HVI method, test simulation, modelling, length distribution, generation algorithm, mean, mode, standard deviation
- Literature list: 1. Hearle J. W. S., Morton W. E. Physical Properties of Textile Fibres. New York, Elsevier, 2008. 796 р. 2. Kiron M. I. USTER HVI 1000: Principle of fiber testing. Textile Learner. 2021;6. URL: https://textilelearner.net/uster-hvi-1000-principles-of-fiber-testing/](https://textilelearner.net/uster-hvi-1000-principles-of-fiber-testing (accessed 22.07.2024). 3. Kiron M. I. Cotton fibre length measuring instruments: Merits and limitations. Textile Learner. 2015. URL: https://textilelearner.net/cotton-fibre-length-measuring-instruments (accessed: 22.07.2024). 4. Turner C., Sayeed Md. A., Hequet E. Reconstruction of the cotton fiber length distribution from a High Volume Instrument® fibrogram. Textile Research Journal. 2023;93(7-8):1651–1669. 5. Zhou J., Wang, J., Xu, B. Extracting fiber length distributions from dual-beard fibrographs with the Levenberg–Marquardt algorithm. Textile Research Journal. 2019;90(1):37–48. 6. Cui X., Rodgers J., Cai Y., Li L., Belmasrour R., Pang S.-S. Obtaining cotton fiber length distributions from the beard test method. Part 1. Theoretical distributions related to the beard method. Journal of Cotton Science. 2009;13:265–273. 7. Bargeron J. D. Mass determination of the cotton length fibrogram. Proceedings of the Beltwide Cotton Conference. San Diego, 1998. Vol. 2. P. 1514–1516. 8. Sevost’yanov P. A., Zabrodin D. A., Dasyuk P. E. Computer modeling in research of textile materials and production. Moscow : Tiso Print Publ., 2014. 264 p. 9. Afonchikov F. A. Assessment of cotton fiber uniformity. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 1957;1:28–32. (In Russ.) 10. Matrokhin A. Yu. Automated design and quality assurance in spinning production using real-time monitoring. Doct. techn. sci. dis. Ivanovo, 2011. 464 p. 11. Prier H. W., Sasser P. E. The mathematical basis of fiber-length analysis from fibrogram data. Textile Research Journal. 1971;42:410–419. 12. Krowicki R. S., Thibodaux D. P., Duckett, K. E. Generating fiber length distribution from the fibrogram. Textile Research Journal. 1996;66:306–310. 13. Kotov D. A., Dzhabarov G. D., Baltabaev S. D. Primary processing of cotton. Moscow, Legkaya industriya Publ., 1978. 430 p. 14. Korobov N. A., Matrokhin A. Yu., Gusev B. N. Revealing of dependence between characteristics of fibres’ length under direct and indirect methods of measurement. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 2006;5(293):29–32. 15. Python Software Foundation. Python programming language. Official website. URL: https://www.python.org (accessed 24.07.2024). 16. NumPy. Official website. URL: https://numpy.org (accessed 24.07.2024). 17. Matplotlib – Visualization with Python. Official website. URL: https://matplotlib.org (accessed 24.07.2024). 18. Documentation for SciPy: module scipy.stats.skewnorm. URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html (accessed 24.07.2024). 19. Azzalini A., Capitanio A. Statistical applications of the multivariate skew-normal distribution. Journal of the Royal Statistical Society. Series B (Statistical Methodology). 1999;61(1):579–602. 20. O’Hagan A., Leonard T. Bayes estimation subject to uncertainty about parameter constraints. Biometrika. 1976;63(1):201–203. 21. Azzalini A., Capitanio A. (The skew-normal and related families). Cambridge, 2014. 262 p. 22. Azzalini A. A class of distributions which includes the normal ones. Scandinavian Journal of Statistics. 1985;1:171–178.
