8
Ksenia Yu. Strunkina
Military Academy of Radiation, Medical and Biological Defense named after Marshal of the Soviet Union S. K. Timoshenko
Pavel N. Rudovsky
Kostroma State University
Sergey V. Palochkin
Bauman Moscow State Technical University
Improvement of the algorithm for constructing trajectories for laying reinforcing filler threads
Strunkina K. Yu., Rudovsky P. N., Palochkin S. V. Improvement of the algorithm for constructing trajectories for laying reinforcing filler threads. Technologies & Quality. 2025. No 3(69). P. 51–58. (In Russ.) https://doi.org/10.34216/2587-6147-2025-3-69-51-58.
DOI: https://doi.org/10.34216/2587-6147-2025-3-69-51-58
УДК: 621.792.6
EDN: RUWXGM
Publish date: 2025-09-09
Annotation: The article is devoted to improving the algorithm for constructing the trajectories of laying reinforcing filler threads in composite materials. The key problems arising in the software implementation of the algorithm considered, include determining the boundary points of the model, ensuring symmetrical partitioning into finite elements, preventing intersections of laying curves, and dependence of the thread location on the choice of starting points. The authors propose practical solutions for each of these problems, such as an algorithm for identifying boundary points using sector analysis of neighbourhoods, mesh optimisation methods in Ansys Workbench, as well as approaches to eliminating curve intersections by adjusting the accuracy parameter Δ, and creating a more uniform laying structure. The results demonstrated, use a specific model as an example, confirming the effectiveness of the proposed methods. The developed algorithm allows automating the process of constructing laying trajectories, which helps to increase the strength and stability of composite materials.
Keywords: composite materials, reinforcing filler, laying algorithm, thread laying uniformity, finite element analysis, principal stresses, boundary points
Funding and acknowledgments: the research was carried out with the financial support of the grant from the Russian Science Foundation (project No. 25-29-00164).
Literature list: 1. Panin M. I., Kapustin V. M., Tsymbalyuk A. E., Khakimov R. V. On the use of complex yarns for reinforcing fibrous composite materials used in the oil and gas industry. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 2021;6(396):103–106. (In Russ.) 2. Nikolaev S. D., Panin M. I., Kashcheyeva M. M., Nikolaeva N. A. Study of the effect of thread tension during rewinding on the specific density of close-wound bobbins. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 2009;4(318):55–58. (In Russ.) 3. Panin M. I. Study of the strength characteristics of special-purpose winding packages using reamers. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 2010;8(329):40–44. (In Russ.) 4. Panin M. I., Gareev A. R., Karpov A. P., Maksimova D. S., Korchinsky N. A. Analysis of textile structures of reinforcing components of composite materials and selection of their application areas. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya Mashinostroenie [Bulletin of the Moscow State Technical University named after N. E. Bauman. Series Mechanical Engineering]. 2023;2(145):15–28. (In Russ.) 5. Rudovsky P. N., Grechukhin A. P., Palochkin S. V. Rational reinforcement of parts made of composite materials with fabrics with variable density by weft. Vestnik Kostromskogo gosudarstvennogo tekhnologicheskogo universiteta [Bulletin of Kostroma State Technological University]. 2015;2(35):21–23. (In Russ.) 6. Kong L. M., Zheng W., Wang X. B., Wu G. D., Qi Ya. Ya., Xue Y. J., Wang B. Ch., Xu H. M. Effects of layering types and fiber off-axis angle on the mechanical properties of s-glass-fiber-reinforced composites. Mekhanika kompozitnyh materialov [Mechanics of composite materials]. 2021;57,4:783–796. (In Russ.) 7. Grechukhin A. P., Seliverstov V. Y., Rudovskiy P. N. The method of determination of yarn bending rigidity and friction factor during interaction of fibers. The Journal of the Textile Institute. 2017;108,12:2067–2072. 8. Grechukhin A. P., Rudovsky P. N. Development of the theory of structure and formation of single-layer tissues. Kostroma, Kostroma St. Univ. Publ., 2017. 171 p. (In Russ.) 9. Grechukhin A. P., Ushakov S. N., Rudovsky P. N., Palochkin S. V. Determination of rational parameters of the thread threading system during the formation of three-dimensional orthogonal woven fibrous material. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 2018;5(377):111–115. (In Russ.) 10. Ushakov S. N., Grechukhin A. P., Rudovsky P. N., Palochkin S. V. The influence of the displacement value of the horizontal weft layer on the density of the arrangement of vertical layers of threads during the formation of three-dimensional orthogonal fabrics. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 2018;6(378):96–100. (In Russ.) 11. Azarov A. V., Latysheva T. A., Khaziev A. R. Optimal design of advanced 3D printed composite parts of rocket and space structures // Advances in Composite Science and Technology (ACST 2019). IOP Conf. Series : materials Science and Engineering. Мoscow, 2020. Vol. 934. P. 012062. 12. Kosykh P. A., Azarov A. V. Algorithm for topological optimization of composite structures based on the analysis of principal stresses. Inzhenerny jzhurnal: naukai I nnovacii [Engineering Journal: Science and Innovations] 2023. No. 12(144). P. 1–18. URL: https://cyberleninka.ru/article/n/algoritm-topologicheskoy-optimizatsii-kompozitnyh-konstruktsiy-osnovannyy-na-analize-glavnyh-napryazheniy/viewer (accessed 26.04.2025). (In Russ.) 13. Strunkina K. Yu., Rudovsky P. N. Selection of a Rational Direction of Reinforcement of Textile-Based Composites. In the collection: Improving Energy and Resource Efficiency, Environmental and Technological Safety of Processes and Apparatus in the Chemical and Related Industries (ISTS “EESTE-2024”). Collection of scientific papers of the international scientific and technical symposium dedicated to the 120th anniversary of the birth of P. G. Romankov. Moscow, 2024. P. 312–316. (In Russ.) 14. Strunkina K. Yu., Rudovsky P. N. Increasing the strength of textile-based composite materials by choosing a rational reinforcement direction. In the collection: Digital technologies in production. Proceedings of the All-Russian scientific and technical conference. Kostroma, Kostroma St. Univ. Publ., 2024. P. 56–60. (In Russ.) 15. Strunkina K. Yu., Rudovsky P. N. Algorithm for calculating the directions of laying textile reinforcing filler taking into account the stress state of the part. Tekhnologii i kachestvo [Technologies & Quality]. 2025. No 2(68). P. 29–35. (In Russ.).
Author's info: Ksenia Yu. Strunkina, Military Academy of Radiation, Medical and Biological Defense named after Marshal of the Soviet Union S. K. Timoshenko, Kostroma, Russia, strunkina.ksyu@mail.ru; https://orcid.org/0009-0000-7366-7891
Co-author's info: Pavel N. Rudovsky, Kostroma State University, Kostroma, Russia, pavel_rudovsky@mail.ru; https://orcid.org/0000-0002-8675-2910
Co-author's info: Sergey V. Palochkin, Bauman Moscow State Technical University, Moscow, Russia, palnigs@mail.ru; https://orcid.org/0009-0005-6192-0243