![]() ![]() |
- 2
- DEVELOPMENT OF AN INSTRUMENTAL METHOD FOR TESTING AND ASSESSING THE QUALITY OF FLAX FIBER
- Pashin E. L., Popova G. A., Orlov A. V. Development of an instrumental method for testing and assessing the quality of flax fiber. Technologies & Quality. 2025. No 1(67). P. 13–20. (In Russ.). https://doi.org/10.34216/2587-6147-2025-1-67-13-20.
- DOI: https://doi.org/10.34216/2587-6147-2025-1-67-13-20
- УДК: 677.11:677.019
- EDN: YGHWLA
- Publish date: 2025-02-17
- Annotation: In the context of import substitution in the textile industry, a pressing challenge is the improvement of fibre quality in newly developed breeding varieties of fibre flax (Linum usitatissimum). Addressing this issue requires the development of rapid and precise methods for fibre quality assessment based on predictive modelling of relative breaking load and yarn breakage rates. It has been established that predicting the spin-ability of flax fibre necessitates consideration of factors such as fibre tensile strength, optical fibrewidth as an indirect measure of linear density, and the variability of this width. A novel fibre quality index, associated with these parameters, has been proposed for the first time. To facilitate fibre testing on small-scale samples, specialised hardware-software complexes have been developed, enabling the determination of fibre proper-ties for subsequent computation of the proposed quality index. Experimental validation and testing of the fibre quality assessment method, using methods for growing of different flax kinds with known differences in fibretechnological value, confirmed the effectiveness of the recommended approaches and quality control tools.
- Keywords: instrumental method, testing, flax, fibre, spinnability, yarn, breakage, breaking force, fineness
- Funding and acknowledgments: the research was carried out with the financial support of a the grant from the Russian Science Foundation (project No. 23-26-00147).
- Literature list: 1. Karyakin L. B., Ginzburg L. N., ed. Handbook on Flax Spinning and Chemical Fibers. Moscow, Legprombytizdat Publ., 1991. 544 p. (In Russ.) 2. Kukin G. N., Solovyov A. N. Textile Materials Science (Raw Textile Materials). Moscow, Legprom-bytizdat Publ., 1985. 216 p. (In Russ.) 3. Shushkin A. A. Technological Evaluation of Flax Breeding Varieties. Moscow, Rostechizdat Publ., 1962. 104 p. (In Russ.) 4. Ivanov A. N., Remizova T. V., Nikolaeva L. M. Technological Assessment of the Quality of Flax Breed-ing Varieties. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 1986;(3):20‒23. (In Russ.) 5. Novitsky G. G., Sinitsyn A. I., Marchenkov A. N., et al. How to Determine the Spinnability of Fiber. Lyon i konoplya [Flax and Hemp]. 1989;(5):38‒39. (In Russ.) 6. Smelskaya I. F., Ilyin L. S., Zhukov V. I., Krotov V. N. Flax Spinning. Kostroma, Kostrom. St. Technol. Univ. Publ., 2007. 544 p. (In Russ.) 7. Kovalev V. B. Method for Assessing Fiber Quality in Individual Stems and Micro-Samples of Straw. Moscow, TSIITEIlegprom Publ., 1969. 14 p. (In Russ.) 8. Perepelkin K. E. Comprehensive Assessment of Thread Quality and Performance in Production and Proc-essing Processes. Khimicheskie volokna [Syntentic fibers]. 1991;(2):45‒56. (In Russ.) 9. Komarov V. G. Designing the Properties of Flax Yarn. Moscow, Legkaya industriya Publ., 1967. 102 p. (In Russ.) 10. Ghosh A., Ishtiaque S. M., Rengasamy S., Mal P. Predictive Models of Yarn Strength. Overview – Arti-cle in Autex Research Journal. 2005;5(1). URL: https://www.researchgate.net/publication/236108456 (accessed 6.01.2025). 11. Pestovskaya E. A. Development of the Theory and Improvement of Technological Processes of Wet Flax Spinning. Ivanovo, Ivanov. St. Technol. Acad., 2010. 200 p. (In Russ.) 12. Sevostyanov A. G. Methods and Tools for Studying the Mechanicotechnological Processes of the Textile Industry. Moscow, Moscow. St. Technol. Univ. named after A. N. Kosygin Publ., 2007. 646 p. (In Russ.) 13. Pashin E. L. Agriproducts and Technological Quality of Flax. Kostroma, Russia Research Institute for Processing of Fiber Crops Publ., 2004. 208 p. (In Russ.) 14. Kulazhanov T. K., Vyazigin S. V., Kruchanetsky V. Z., Otynshiev M. B. Selection of an Informative In-dicator for Measuring the Fineness of Wool Fibers Using Electron Microscopy. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educa-tional Institutions (Series Textile Industry Technology)]. 2016;4(364):44–49. (In Russ.) 15. Pashin E. L., Orlov A. V. Testing System for Controlling the Breaking Characteristics of Fibers and Yarns during High-Speed Stretching. Zavodskaya laboratoria. Diagnostika materialov [Factory Labora-tory. Materials Diagnostics]. 2019;85(2):60–64. (In Russ.) 16. Pashin E. L., Orlov A. V. Method for Preparing a Digital Image of Bast Fiber Samples for Optical Evaluation of Their Geometric Characteristics. Tekhnologii i kachestvo [Technologies & Quality]. 2018;1(39):43–47. (In Russ.) 17. Pashin E. L., Orlov A. V. Justification of Lighting Conditions for Bast Fibers Thickness Assessment Us-ing Machine Vision. Tekhnologii i kachestvo [Technologies & Quality]. 2019;1(43):21–25. (In Russ.) 18. Orlov A. V., Pashin E. L. Method for Assessing the Fineness of Bast Fiber. Patent of the Russian Federa-tion for Invention No. 2779715. Applicant and Patent Holder: Kostroma State Agricultural Academy, Publ. 12.09.2022, Bull. no. 26. (In Russ.)