- 6
- RESEARCH ON MATERIAL MODELS IN FINITE ELEMENT ANALYSIS OF HIGH-SPEED LOADING
- Grechukhin A. P., Kulikov A. V., Brezgin V. A., Rudovsky P. N., Razina A. S. Research on material models in finite element analysis of high-speed loading. Technologies & Quality. 2025. No 2(68). P. 36–42. (In Russ.). https://doi.org/10.34216/2587-6147-2025-2-68-36-42.
- DOI: https://doi.org/10.34216/2587-6147-2025-2-68-36-42
- УДК: 004.94
- EDN: CBYFGH
- Publish date: 2025-05-20
- Annotation: This article discusses the modeling features of high-speed loading of textile materials using the finite element method (FEM). Several orthotropic material models in LS-DYNA were analysed using an eight-node element with a single integration point under shear conditions. The results revealed significant (up to tenfold) differences in shear-plane stresses and up to 10 % deviation in the element’s internal energy. The importance of proper parameter selection, energy balance monitoring, and accounting for the hourglass effect is emphasised for reliable simulation. The study concludes that accurate orthotropic model settings and careful control of the finite element mesh are essential in high-speed loading scenarios.
- Keywords: finite element method, high-speed loading, textile materials, orthotropic materials, LS-DYNA, internal energy, hourglass effect, shift
- Funding and acknowledgments: the research was carried out with the financial support of the grant from the Russian Science Foundation (project No. 25-29-00164).
- Literature list: 1. Tran P., Ngo T., Yang E. C., Mendis P., Humphries W. Effects of architecture on ballistic resistance of textile fabrics: Numerical study. International Journal of Damage Mechanics. 2014;23:359–376. 2. Nilakantan G., Horner S., Halls V., Zheng J. Virtual ballistic impact testing of Kevlar soft armor: Predictive and validated finite element modeling of the V0–V100 probabilistic penetration response. Defence Technology. 2018: 213–225. 3. Ignatova A. V., Dolganina N. Yu., Sapozhnikov S. B., Shabley A. A. Aramid fabric surface treatment and its impact on the mechanics of yarn’s frictional interaction. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika [Bulletin of Perm National Research Polytechnic University. Mechanics]. 2017;4:121–137. (In Russ.) 4. Kudryavtsev O. A., Sapozhnikov S. B. Yarn-level modelling of woven and unidirectional thermoplastic composite materials under ballistic impact. PNRPU Mechanics Bulletin 3. 2016;108–119. 5. Rao M. P., Duan Y., Keefe M. Powers B. M., Bogetti T. Modeling the effects of yarn material properties and friction on the ballistic impact of a plain-weave fabric. Composite Structures. 2009;89(4):556–566. 6. Qian F., Zhao L., Zhang S., Yao G., Liu Y. Comparative analysis of experimental results and finite element simulation results of ballistic impact on 3D woven reinforced composites. Journal of Engineered Fibers and Fabrics. 2022;17. doi:10.1177/15589250221138910. 7. Su H., Si X., Liu Ya., Xu M., Huang G., Pan J. Experimental and numerical investigation of the behavior of three-dimensional orthogonal woven composite plates under high-velocity impact. Mechanics of Advanced Materials and Structures. 2022;30(1):1–10. 8. Chen F., Peng Y., Chen X., Wang K., Liu Z., Chen C. Investigation of the Ballistic Performance of GFRP Laminate under 150 m/s High-Velocity Impact: Simulation and Experiment. Polymers. 2021; 13(4):604. 9. Xiwen Jia, Baozhong Sun, Bohong Gua. Numerical Simulation on Ballistic Penetration Damage of 3D Orthogonal Woven Fabric at Microstructure Level. International Journal of Damage Mechanics. 2012;21(2):237–266. 10. Osborne, M. Single-Element Characterization of the LS-DYNA MAT54 Material Model [Master’s thesis]. Washington, Washington State University, 2023. 105 p. 11. LS-DYNA Theory Manual. Livermore, Livermore Software Technology Corporation, 2019, 886 p. 12. Kaw Autar K. Mechanics of composite materials. Boca Raton.: Taylor and Francis, 2006. 474 p. 13. Yang C., Tran P., Ngo T., Mendis P., Humphries W. Effect of textile architecture on energy absorption of woven fabrics subjected to ballistic impact. Applied Mechanics and Materials. 2014;553:757–762. 14. Grechukhin A. P., Kulikov A. V., Starinets I. V., Ershov V. N., Rudovskiy P. N. Numerical impact model of a high-speed object on a woven barrier made of aramid threads Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 2024;1(409):211–217. (In Russ.) 15. Grechukhin A. P., Khabibullaev A., Rudovsky P. N., Starinets I. V., Kulikov A. V. Method for 3D modeling of three-dimensional orthogonal fabrics. Izvestiya vysshih uchebnyh zavedenij. Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Series Textile Industry Technology]. 2023;1(403):133–138. (In Russ.)