- 1
- ANALYSIS OF STRUCTURAL CHANGES OF MODIFIED POLYETHYLENE FILMS BY DIFFERENTIAL SCANNING CALORIMETRY
- Kharapudko Yu. V., Timoshina Yu. A., Voznesensky E. F. Analysis of structural changes of modified polyethylene films by differential scanning calorimetry. Technologies & Quality. 2022. No 1(55). P. 5–11 (In Russ.) https: doi 10.34216/2587-6147-2022-1-55-5-11.
- DOI: 10.34216/2587-6147-2022-1-55-5-11
- УДК: 533.924: 677.494
- Publish date: 2022-02-22
- Annotation: The article presents the results of studies of the effect of high-frequency capacitive (HF) plasma modification on the change in the structure of polyethylene (PE) films. To analyse structural changes by differential scanning calometry (DSC), the temperature and specific heat of melting, as well as the glass transition temperature of PE film samples before and after plasma modification in plasma-forming gases argon and air were determined. A temperature programme has been selected to determine the glass transition temperature, which can serve as a qualitative characteristic of structural changes in polymer macromolecules. It is shown that the modified samples have an increase in the glass transition temperature, while the maximum effect is observed for samples modified in the HE plasma of air, which may be due to the formation of functional groups, multiple bonds and crosslinking, which contributes to a decrease in molecular mobility and difficulty of conformational transitions in PE macromolecules.
- Keywords: polymer film, polyethylene, polymer structure, plasma modification, low-pressure high-frequency discharge, differential scanning calorimetry, glass transition temperature
- Literature list: 1. Thirtha V., Lehman R., Nosker T. Morphological effects on glass transition behavior in selected immis-cible blends of amorphous and semicrystalline polymers. Polymer. 2006;47,15:5392–5401. 2. Gursewak S., Haripada B., Rajor A., Choudhary V. Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends. Polymer Bulletin. 2011;66,11:939–953. 3. Ataeefard M., Moradian S., Rajor A., Mirabedini M., Ebrahimi M., Asiaban S. Surface Properties of Low Density Polyethylene upon Low-Temperature Plasma Treatment with Various Gases. Plasma Chemistry and Plasma Processing. 2008;28,3:377–390. 4. Allayarov S. R., Belov G. P., Golodkov O. N., Shaimukhametova I. F., Bogdanova S. A., Dixon D. A. Effect of accelerated protons on the surface properties of polyethylene. Himiya vysokih energij [Chemis-try of high energies]. 2018;52,4:273–281. (in Russ.) 5. Gilman A. B. Low-temperature plasma treatment as an effective method for surface modification of poly-meric materials. Himiya vysokih energij [High Energy Chemistry]. 2003;37,1:17–23. (in Russ.) 6. Kutepov A. M., Zakharov A. G., Maksimov A. I., Titov V. A. Plasma modification of textile materials: prospects and problems. Rossijskij himicheskij zhurnal [Russian Chemical Journal]. 2002;46,1:103–115. (in Russ.) 7. Sharnina L. V. Low-temperature plasma as the basis for creation of modern textile chemical technologies. Fibre Chemistry. 2004;36,6:431–436. (in Russ.) 8. Maksimov A. I. Nikiforov A. Yu. Low-temperature plasma treatment as an effective method for surface modification of polymeric materials. Himiya vysokih energij [High Energy Chemistry]. 2007;41,6:513–519. (in Russ.) 9. Abdullin I. S., Zheltukhin V. S., Sagbiev I. R., Shaekhov M. F. Modification of nanolayers in low-pressure high-frequency plasma. Kazan, KSTU, 2007. 356 p. (in Russ.) 10. Sergeeva E. A., Korneeva N. V., Zenitova L. A., Abdullin I. S. Modification of synthetic fibrous materi-als and products by nonequilibrium low-temperature plasma. Properties, structure, technologies. Kazan, KSTU, 2011. 255 p. (in Russ.) 11. Timoshina Y. A., Voznesensky E. F., Zheltukhin V. S. Mathematical model of the interaction of low-energy inert gas ions with polypropylene in radio-frequency plasma of low pressure. Technologii i kachestvo [Technologies & Quality]. 2021;3(53):18–23. (In Russ.) 12. Azanova A. A. Plasma modification of knitted fabrics. Dizajn. Materialy. Tekhnologiya [Design. Materi-als. Technology]. 2013;2(27):86–88. (in Russ.) 13. Fazylova D. I., Zenitova L. A., Steinberg E. M., Abdullin I. S. Studying the effect of plasma-forming gas on the structure of textile fibers. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University]. 2011;16:52–57. (in Russ.) 14. Shutilin J. F. The Temperature transitions in elastomers. Moscow, TSNIIteneftekhim, 1984. 66 p. (in Russ.) 15. Rostiashvili V. G., Irzhak V. I., Rosenberg B. A. Glass Transition of polymers. Leningrad, Khimiya, 1987. 188 p.. (in Russ.) 16. Hutchinson J. M. Determination of the glass transition temperature: methods correlation and structural heterogeneity. Journal of Thermal Analysis and Calorimetry. 2009;98,3:579–589. 17. Rieger J. The glass transition temperature Tg of polymers – Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polymer Testing. 2001;20,2:199–204. 18. Obata I., Chirao T., Masaru I. Bulk Properties of syndiotactic 1,2-Polybutadiene. Polymer Journal. 1975;7,2:207–216. 19. Timoshina Y. A. Influence of the molecular structure of fiber-forming polymers on the effects of high-frequency plasma modification of synthetic fibers. Izvestiya vysshih uchebnyh zavedenij. Tekhnologiya legkoj promyshlennosti [Proceedings of higher educational institutions. Light industry technology]. 2020;4:51–54. (In Russ.) 20. Li R. Time-temperature superposition method for glass transition temperature of plastic materials. Materials Science and Engineering. 2000;278,1:36–45.