8
Filippov Gleb S.
Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN); Moscow Aviation Institute (National Research University)
Shalyukhin Konstantin A.
Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN);
Rashoyan Gagik V.
Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN);
Glazunov Viktor A.
Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN);
Skvortsov Sergey A.
Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN);
Aleshin Alexandr K.
Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN);
PARALLEL MANIPULATOR MECHANISM FOR USE IN ROBOTIC SURGERY
Filippov G. S., Shalyukhin K. A., Rashoyan G. V., Glazunov V. A., Skvortsov S. A., Aleshin A. K. Parallel manipulator mechanism for use in robotic surgery // Tekhnologii i kachestvo = Technologies & Quality. 2021;1(51): 46–51. (In Russ.) https://doi.org/10.34216/2587-6147-2021-1-51-46-51
DOI: https://doi.org/10.34216/2587-6147-2021-1-51-46-51
УДК: 004.5:616-089
Publish date: 2021-03-11
Annotation: The article examines the mechanisms of parallel and parallel-sequential structure, including specific translational-guides, flat, spherical mechanisms of a parallel structure with three degrees of freedom, modifications of Delta robots from various manufacturers. The most famous studies of robots of parallel-serial structure are presented. Mazor Renaissance and Mazor X robotic systems for robotic assistance during spinal surgery are examined. The method of synthesis of mechanisms of parallel-serial structure with five degrees of freedom is briefly presented. Examples of synthesised schemes of mechanisms and three-dimensional schemes, synthesised using in the computer-aided design system Compass 3D, are given. A diagram of a mechanism of a parallel-sequential structure with five degrees of freedom for robotic assistance during minimally invasive operations, which can be used as an alternative to the da Vinci Surgical System Platform, is examined. An example of modelling the solution of the inverse problem of positions, direct and inverse problems of velocities and direct and inverse dynamic problems in the Mathcad system, the result of modelling the motion of the output link in various initial conditions is given. The results of experimental studies using a prototype mechanism are shown.
Keywords: : mechanism of parallel structure, synthesis and analysis, dynamic problem, mechanism of parallel-sequential structure, robotic surgery, mathematical modeling, robots of parallel-serial structure
Literature list: 1. Strategiya nauchno-tekhnologicheskogo razvitiya Rossijskoj Federacii : utv. Ukazom Prezi-denta Rossijskoj Federacii ot 1 dekabrya 2016 g. № 642 // SPS “Konsul'tantPlyus”. URL: http://www. consultant.ru/document/cons_doc_LAW_207967 (data obrashcheniya: 20.10.2020). 2. Prognoz nauchno-tekhnologicheskogo razvitiya Rossijskoj Federacii na period do 2030 goda : utv. Pravitel'stvom RF 3 yanvarya 2014 g. // SPS “Konsul'tantPlyus”. URL: http://www. consultant.ru/document/cons_doc_LAW_157978 (data obrashcheniya: 20.10.2020). 3. Transpedikulyarnaya fiksaciya pozvonochnika (2020) // Hirurgiya pozvonochnika. Gomel'. URL: https://pozvonok.by/lechenie/chto-takoe-transpedikulyarnyj-fiksator-tpf (data obrashcheniya: 30.03.2021). 4. Robot-assistirovannaya hirurgiya v lechenii bol'nyh s opuholyami pozvonochnika / E. R. Musaev, A. K. Valiev, K. A. Borzov, D. I. Safronov // Klinicheskaya i eksperimental'naya hirurgiya : zhurnal im. akademika B. V. Petrovskogo. 2015. № 4(10). S. 53–55. 5. Robotic assisted surgeries for the treatment of spine tumors / X. Hu, T. J. Scharschmidt, D. D. Ohn-meiss, I. H. Lieberman // International Journal of Spine Surgery. 2015. Vol. 9, nr 1. URL: http://www.ijssurgery.com/content/ijss/9/1.full.pdf (data obrashcheniya: 15.01.2021). 6. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part 1. Technical development and a test case result / I. H. Lieberman, D. Togawa, M. M. Kayanja et al. // Neurosurgery. 2006. Vol. 59, iss. 3. P. 641–650. 7. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study / D. P. Devito, L. Kaplan, R. Dietl et al. // Spine. 2010. Vol. 35, nr 24. P. 2109–2115. 8. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous roboticguided, pedicle screw placement / S. R. Kantelhardt, R. Martinez, S. Baerwinkel et al. // European Spine Journal. 2011. Nr 20. P. 860–868. 9. Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system / I. H. Lieberman, M. A. Hardenbrook, J. C. Wang, R. D. Guyer // Journal of Spinal Disorders and Techniques. 2012. Vol. 25, nr 5. P. 241–248. 10. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement / I. Pechlivanis, G. Kiriyanthan, M. Engelhardt et al. // Spine. 2009. Vol. 34, nr 4. P. 392–398. 11. Sukovich W., Brink-Danan S., Hardenbrook M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist // International Journal of Medical Robotics. 2006. Nr 2. P. 114–122. 12. Hu X., Ohnmeiss D. D., Lieberman I. H. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients // European Spine Journal. 2013. Nr 22(3). P. 661–666. 13. Nash otvet Da Vinchi. Rossijskie uchenye razrabatyvayut nastoyashchego robota-hirurga / YU. Medvedev // Rossijskaya gazeta. 2019. № 66(7824). 14. Parallel and Sequential Structures of Manipulators in Robotic Surgery / E. I. Veliev, R. F. Ganiev, V. A. Glazunov, G. S. Filippov // Doklady Physics. 2019. Vol. 64, nr 3. P. 106–109. 15. Glazunov V. A. Mekhanizmy parallel'noj struktury i ih primenenie: robototekhnicheskie, tekhnologicheskie, medicinskie, obuchayushchie sistemy : monografiya. – Izhevsk : Izhevskij institut komp'yuternyh issledovanij, 2018. – 1036 s. 16. Filippov G. S., Glazunov V. A., Lastochkin A. B. Mekhanizm parallel'noj struktury s 5 stepenyami svobody dlya vertebral'nyh operacij i additivnyh tekhnologij // Spravochnik. Inzhenernyj zhurnal s prilozheniem. 2018. № 10(259). C. 55–60. 17. Razrabotka i reshenie zadachi o polozheniyah mekhanizma parallel'no-posledovatel'noj struktury dlya hirurgicheskih operacij kak al'ternativy robotu da Vinci / E. I. Veliev, R. F. Ganiev, V. A. Glazunov, G. S. Filippov, A. N. Terekhova // Problemy mashinostroeniya i nadezhnosti mashin. 2019. № 4. S. 3–13. 18. Razrabotka robotov-assistentov dlya hirurgicheskih operacij / V. A. Glazunov, L. V. Gavrilina, G. S. Filippov, P. A. Shvec, V. F. Yudkin // Russkij inzhener. 2020. № 4(69). S. 43–45. 19. Patent RF na poleznuyu model' № 191807 RF Prostranstvennyj mekhanizm parallel'noj struktury s pyat'yu stepenyami svobody / Filippov G. S., Glazunov V. A., Aleshin A. K., Levin S. V., Rashoyan G. V., SHalyuhin K. A., Skvorcov S. A., Filippov O. S., Gavryushin S. S., Grigor'yanc A. G. Opubl. 22.08.2019, Byul. № 24. 20. Filippov G. S. Nauchnoe obosnovanie i razrabotka mekhanizmov parallel'no-posledovatel'noj struktury dlya mnogokoordinatnyh manipulyacionnyh sistem : dis. … d-ra tekhn. nauk. M., 2019. 324 s.
Author's info: Filippov Gleb S., Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN); Moscow Aviation Institute (National Research University), Moscow, Russia E-mail: filippov.gleb@gmail.com, https://orcid.org/0000-0002-4081-8857
Co-author's info: Shalyukhin Konstantin A., Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russia E-mail: constmeister@gmail.com, https://orcid.org/0000-0001-7515-2242
Co-author's info: Rashoyan Gagik V., Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russia E-mail: gagik_r@bk.ru, https://orcid.org/0000-0002-8255-8109
Co-author's info: Glazunov Viktor A., Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russia E-mail: vaglznv@mail.ru, https://orcid.org/0000-0002-4802-0217
Co-author's info: Skvortsov Sergey A., Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russia E-mail: 1691skvorcov@mail.ru, https://orcid.org/0000-0002-0470-0923
Co-author's info: Aleshin Alexandr K., Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russia E-mail: aleshin_ak@mail.ru, https://orcid.org/0000-0002-7960-2586